12 research outputs found

    Impact of Forest Seral Stage on use of Ant Communities for Rapid Assessment of Terrestrial Ecosystem Health

    Get PDF
    Bioassessment evaluates ecosystem health by using the responses of a community of organisms that integrate all aspects of the ecosystem. A variety of bioassessment methods have been applied to aquatic ecosystems; however, terrestrial methods are less advanced. The objective of this study was to examine baseline differences in ant communities at different seral stages from clear cut to mature pine plantation as a precursor to developing a broader terrestrial bioassessment protocol. Comparative sampling was conducted at nine sites having four seral stages: clearcut, 5 year recovery, 15 year recovery, and mature stands. Soil and vegetation data were also collected at each site. Ants were identified to genus. Analysis of the ant data indicated that ants respond strongly to habitat changes that accompany ecological succession in managed pine forests, and both individual genera and ant community structure can be used as indicators of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in mature seral stages was likely related to conditions on the forest floor favoring litter dwelling and cold climate specialists. While ants may be very useful in identifying environmental stress in managed pine forests, adjustments must be made for seral stage when comparing impacted and unimpacted forests

    Model selection in historical research using approximate Bayesian computation

    Get PDF
    Formal Models and History Computational models are increasingly being used to study historical dynamics. This new trend, which could be named Model-Based History, makes use of recently published datasets and innovative quantitative methods to improve our understanding of past societies based on their written sources. The extensive use of formal models allows historians to reevaluate hypotheses formulated decades ago and still subject to debate due to the lack of an adequate quantitative framework. The initiative has the potential to transform the discipline if it solves the challenges posed by the study of historical dynamics. These difficulties are based on the complexities of modelling social interaction, and the methodological issues raised by the evaluation of formal models against data with low sample size, high variance and strong fragmentation. This work examines an alternate approach to this evaluation based on a Bayesian-inspired model selection method. The validity of the classical Lanchester's laws of combat is examined against a dataset comprising over a thousand battles spanning 300 years. Four variations of the basic equations are discussed, including the three most common formulations (linear, squared, and logarithmic) and a new variant introducing fatigue. Approximate Bayesian Computation is then used to infer both parameter values and model selection via Bayes Factors. Results indicate decisive evidence favouring the new fatigue model. The interpretation of both parameter estimations and model selection provides new insights into the factors guiding the evolution of warfare. At a methodological level, the case study shows how model selection methods can be used to guide historical research through the comparison between existing hypotheses and empirical evidence.Funding for this work was provided by the SimulPast Consolider Ingenio project (CSD2010-00034) of the former Ministry for Science and Innovation of the Spanish Government and the European Research Council Advanced Grant EPNet (340828).Peer ReviewedPostprint (published version

    Trail pheromones: an integrative view of their role in colony organization

    No full text
    Trail pheromones do more than simply guide social insect workers from point A to point B. Recent research has revealed additional ways in which they help to regulate colony foraging, often via positive and negative feedback processes that influence the exploitation of the different resources that a colony has knowledge of. Trail pheromones are often complementary or synergistic with other information sources, such as individual memory. Pheromone trails can be composed of two or more pheromones with different functions, and information may be embedded in the trail network geometry. These findings indicate remarkable sophistication in how trail pheromones are used to regulate colony-level behavior, and how trail pheromones are used and deployed at the individual level

    Longitudinal Study of Foraging Networks in the Grass-Cutting Ant Atta capiguara Gonçalves, 1944

    No full text
    International audienceColonies of leaf-cutting ants of the genus Atta need to collect large quantities of vegetal substrate in their environment to ensure their growth. They do so by building and extending over time a foraging network that consists of several underground tunnels extending above ground by physical trails. This paper presents a longitudinal study of the foraging network of two mature colonies of the grass-cutting ant Atta capiguara (Gonçalves) located in a pasture in central Brazil. Specifically, we investigated whether the extension of the foraging area of the colonies required to reach new resources occurs by building new and longer underground tunnels or by building new and longer physical trails. Each nest was surveyed at intervals of approximately 15 days during 1 year. At each survey we mapped the position of the tunnel entrances and foraging trails at which activity was observed. In addition, we assessed the excavation effort of the colonies since the last survey by the number and distance to the nest of new tunnel entrances, and the physical trail construction effort by the number and length of newly built physical trails. Our study reveals that in A. capiguara the collection of new resources around the nest required to ensure the continuous growth of the colonies is achieved mainly through the excavation of new underground tunnels, opening at greater distance from the nest, not through the building of longer aboveground physical trail

    What determines the duration of war? Insights from assessment strategies in animal contests.

    No full text
    Interstate wars and animal contests both involve disputed resources, restraint and giving up decisions. In both cases it seems illogical for the weaker side to persist in the conflict if it will eventually lose. In the case of animal contests analyses of the links between opponent power and contest duration have provided insights into what sources of information are available to fighting animals. I outline the theory of information use during animal contests and describe a statistical framework that has been used to distinguish between two strategies that individuals use to decide whether to persist or quit. I then apply this framework to the analysis of interstate wars. War duration increases with the power of winners and losers. These patterns provide no support for the idea that wars are settled on the basis of mutual assessment of capabilities but indicate that settlement is based on attrition. In contrast to most animal contests, war duration is as closely linked to the power of the winning side as to that of the losing side. Overall, this analysis highlights a number of similarities between animal contests and interstate war, indicating that both could be investigated using similar conceptual frameworks
    corecore